That is to say,

That is to say, concerning HEED considers both energy and communication cost when selecting CHs. Unlike LEACH, the probability that two nodes within each other��s transmission range becoming CHs is small which means that the CHs are well distributed.The Energy-Efficient Unequal Clustering (EEUC) [6] partitions the network into clusters of unequal sizes where the clusters closer to the Sink have smaller sizes than those farther away from the Sink. Thus, CHs closer to the Sink, can save some energy for the data relaying. Unlike others protocols such as LEACH and EEUC uses an energy-aware multi-hop routing protocol for inter-cluster communication, however, the setup phase in EEUC has a lot of overhead and as a result it consumes more energy in the setup phase when compared to LEACH.
In stable state phase, EEUC saves energy by using an inter-cluster multi-hop data routing mechanism.Energy-Efficient Level-based and Time-based Clustering (EELTC) [7] is a hierarchical clustering algorithm with multi-hop communication that establishes unequal clusters with very low controlling overhead. In this protocol the network is divided into radial regions using a heuristic formula. The Sink calculates upper bound and lower bound of each level and it then broadcasts the results across the network via a ��hello�� message. All sensors determine their level by receiving this message from the Sink. Based on its level and energy each node sets a time to start advertising itself in the network to form clusters. The algorithm shows good energy efficiency and even load distribution across the whole network.
A modified version called EELTC-M is proposed in [8]. This modification builds upon the previously proposed algorithm EELTC; the lengths of levels are modeled as an optimization problem based on the energy saved for each cluster. This energy is the difference of energy used by cluster head when using single-hop versus Cilengitide multi-hop communication model. In this manner, the cluster in the next level expands its size to cover some extra nodes instead. A comparative simulation was performed and EELTC-M showed to have a longer network lifetime compared to both the previous version and the EEUC protocol.The remainder of the article is organized as follows. We discuss the original star-based communication architecture and sensor networks as well as the original energy model in Section 2.
After that we provide a detailed investigation of current requirements for a real WSN Deployment. In Section 4 we propose a new energy efficient, robust and scalable architecture for WSN that satisfies the real requirements studied in previous section. Section 5 explains the simulation setup and presents the simulation results. In Section selleck chemicals 6 we present the practical application and the experimental results of the proposed architecture. We then conclude our article in Section 7.2.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>