To further explore the mechanism behind the increase in haptoglobin concentration observed post challenge with Salmonella in study A and B, in study C we included flow cytometric analysis of the cellular composition of the spleen. Of all the cell subsets analysed, selleck products only the proportions of neutrophils were significantly increased upon infection. We also found a positive correlation between the number of neutrophils in the spleen and the CFU of Salmonella in the
organs of the infected mice, but not the CFU of Salmonella in the ileum, indicating that the neutrophil number and thus the haptoglobin concentration reflects an immune response towards the bacteria translocated to the organs rather than the Salmonella present in the gastrointestinal tract. This is in accordance with earlier findings demonstrating that neutrophils are important for host survival during the primary response to Salmonella infection, primarily due to control of bacterial replication [32]. Other investigators have reported changes in other cell subsets in the spleen post infection, e.g. a decrease in T, NK and NKT cells [33], but although there was a positive correlation between organ CFU and T cell numbers, we did not find other significant changes in the cell numbers of the different cell populations analysed.
Studies reporting adverse effects of FOS and inulin on S. Enteritidis CH5183284 nmr infections in rats have been published [28–31]. In these studies it is hypothesised that the increased translocation signaling pathway of S. Enteritidis, measured as increased urinary excretion of nitrates and nitrites, is caused by fermentation of the prebiotics producing high concentrations of lactic acid and short chain fatty acids. This was found to impair the mucosal barrier, measured as faecal mucin excretion [28–31]. However, the studies were all based on low calcium
diets (0.80-1.20 g Ca/kg) and the adverse effect could be reversed by oral administration of calcium [31]. Acidification of the gut content has been shown to be counteracted by dietary calcium, suggesting that the increased translocation could be connected to low pH [34, 35]. However, the diets used in our study contained the amount of calcium recommended for rodents crotamiton (5 g/kg) [36], and our results thus contradict that the observed increased translocation occurs only when the diet is low in calcium. Additionally, our results contradict that acidification per se should mediate the increased translocation, since no drop in cecal pH was observed in animals fed with FOS or XOS in the present study (Table 1). The major effects of prebiotic fermentation are typically seen in the large intestine, however according to the refined definition of prebiotics [7], as well to the results presented here, the effects are not restricted to the colon.