S-nitrosoglutathione (GSNO), a potent NO donor formed by the inte

S-nitrosoglutathione (GSNO), a potent NO donor formed by the interaction of NO with intracellular glutathione (GSH), is a major factor in this pathway and is considered one of the strongest naturally occurring nitrosating agent. We previously

described the broad-spectrum antimicrobial activity of a nanoparticulate platform capable of controlled and sustained release of NO (NO-np). Interestingly, in vivo efficacy of the NO-np surpassed in vitro data generated. We hypothesized that the enhanced activity was in part achieved via the interaction between the generated NO and available GSH, forming GSNO. In the current study, we investigated the efficiency of NO-np to form GSNO in the presence of GSH was evaluated, and selleck chemical assessed the antimicrobial activity of the formed GSNO against methicillin resistant Staphylococcus aureus (MRSA). Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. When GSH was combined with NO-np, GSNO was rapidly produced and significant concentrations of GSNO were maintained for >24 h. The GSNO generated was more effective compared to NO-np alone against all bacterial strains examined, with P. aeruginosa being the most sensitive and K. pneumoniae the most LY294002 ic50 resistant. We conclude that the combination of NO-np with GSH is an effective

means of generating GSNO, and presents a novel approach to potent antimicrobial therapy. (C) 2011 Elsevier Inc. All rights reserved.”
“Hyperphosphatemia is the major risk factor associated with vascular calcification (VC) in end-stage renal disease. As oxidative stress is increased in Magnesium chelatase uremia, we studied the role of mitochondrial reactive

oxygen species (ROS) and nuclear factor-kappa B signaling in phosphate-induced VC. In an in vitro calcification model (beta-glycerophosphate (BGP) induction) using bovine aortic smooth muscle cells, the production of intracellular and mitochondrial ROS, or superoxide anion, was stimulated by increased mitochondrial membrane potential. This effect was blocked by the superoxide dismutase (SOD) mimic MnTMPyP, a respiratory chain inhibitor rotenone, or a protonophore. Calcium deposition and the switch of smooth muscle cells from a contractile to an osteogenic phenotype were decreased when mitochondrial ROS generation was inhibited by the respiratory chain inhibitor, MnTMPyP, or the overexpression of SOD1 and SOD2 and uncoupling protein 2. The phosphorylation of IkK beta, I kappa B alpha degradation, and p65 nuclear translocation were increased by BGP but reversed when mitochondrial ROS production was blocked by protonophore or MnTMPyP. Knockdown of endogenous p65 or overexpression of I kappa B alpha reduced calcium deposition in the cultured cells. Furthermore, in a rat model of dietary adenine-induced chronic renal failure, MnTMPyP reduced aortic ROS levels, p65 activation, and calcium deposition.

Comments are closed.