burgdorferi and host/vector genes [16, 19–26] Although TaqMan pr

burgdorferi and host/vector genes [16, 19–26]. Although TaqMan probes have been reported to be a sensitive detection system for PCR of B. burgdorferi amplicon by several laboratories [19–22, 24, 25], high background fluorescence of the unhybridized probe, i.e., low signal-to-noise ratio, and lower sensitivity due to incomplete enzymatic hydrolysis has been observed with these probes [19, 20,

27]. In addition, compatibility of the fluorophore and quencher due to the requirement for sufficient spectral overlap remains a significant issue due to the requirement of FRET in TaqMan probes. This limits its application in the multiplex analysis to some extent. To the best of our knowledge, simultaneous detection of mouse and spirochete DNA using TaqMan probes in multiplex analysis has not been reported. In contrast to TaqMan Apoptosis Compound Library probes, quenching due to a direct interaction between fluorophore and quencher in CA3 chemical structure molecular beacons is much more efficient. It also offers a choice of a variety of fluorophores with quenchers. Indeed, the efficiency of molecular beacons is not affected significantly by the choice of different

fluorophores-quencher combinations [30] Denaturation profiles of the Nidogen molecular probe as well as three different RecA molecular beacons, and detection of B. burgdorferi by PCR assays indicate that RecA3 emits most fluorescence and shows the highest sensitivity of detection. RecA3 has a high GC content, and thereby, forms the most stable probe-target hybrid and hairpin structures. Furthermore, its detection step temperature is CX-5461 clinical trial most compatible with that of the Nidogen molecular beacon (Table 1). This also makes RecA3 most suitable for multiplex analyses. The ABI7700 sequence detector software from

Applied Biosystems can distinguish the emission of a particular fluorescence signal (from FAM or TET fluorophores) associated with each molecular beacon in PCR assays. Lower background signal facilitated the efficient detection of B. burgdorferi at seven different dilutions, and a high co-efficient of correlation between Ct values and spirochete number (r2 = 0.996) was obtained. In addition, sensitivity of detection of B. burgdorferi DNA was not affected by the presence of mouse DNA and remained comparable in monoplex versus multiplex analyses. Ribonucleotide reductase These results, as well as a high correlation (R2 = 0.998) between threshold cycle number and the amount of mouse DNA, made quantification of the spirochetes burden in different infected mouse tissues convenient and accurate since a single PCR tube per sample was used for the analysis of both B. burgdorferi and mouse amplicons. This could be of great importance if this system is employed for detection of B. burgdorferi, as well as other pathogens, in patient tissues or fluids, where quantities of samples are often limiting.

Comments are closed.